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Definitions
ambient, TA = where all the heat ends up, the environment

thermally “far” from the device (not to be confused with the
case temperature, which may be vastly different from the air
temperature just millimeters away).

case temperature, TC = representative point on the
external “case” of the device, location must be well defined
along with use of any parameters based on this value.

junction, TJ = the hottest point inside the semiconductor
device.

psi−JT, 
�JT �

TJ−TT
Pd  thermal characterization

parameter, measured junction to case top (TT)

psi−Jx, 
�Jx �

TJ−Tx
Pd  thermal characterization

parameter, measured junction to location defined (Tx)

psi−xA, 
�xA �

Tx−TA
Pd  thermal characterization

parameter, measured from location defined (Tx) to ambient

theta−JA, 
�JA �

TJ−TA
Pd  overall thermal resistance of

device plus external system

theta−JC, 
�JC �

TJ−TC
Pd  ideally, thermal resistance of just

the device as measured to the case

Pd = total power dissipation of device

min−pad = in reference to a thermal test board, a board
having only the minimum amount of metal pads and traces
required to mount the device and carry power and signals to
and from the device; the traces may actually have
significantly more area than the mounting pad itself, and the
total size of the board (typically 3″ square), and its thickness
(0.062″) may be significantly different than what will be
used in an actual application. These variables are only some
of those that render min−pad data sheet values of limited use
in a real application environment.

1″ pad = in reference to a thermal test board, a board
having a nominally 1″ square area of copper plating, at the
center of which is mounted the package; typically the
additional trace area required to carry power and signals to
and from the device will be a small fraction (<10%) of the
pad; but for larger devices, e.g. a D2pak, the actual heatsink
itself may be a significant fraction of 1−sq−in., so the
difference between the min−pad and 1″ pad values will not
be as large for large devices as it is for tiny devices. Copper
spreader thickness (typically 1−oz, meaning 1−sq.−ft of the
material in that thickness would weigh 1−oz), and overall
board size (typically 3″ square) and thickness (0.062″) will
potentially make the value significantly different than what
would be experienced in an actual application. These
variables are only some of those that render 1″ pad data sheet
values of limited use in a real application environment.

Steady State Data
By “steady state”, we mean operating conditions wherein

power dissipation in each relevant device, has been constant
for a long enough period of time that temperature changes
are no longer occurring. Starting from zero power, with all
temperatures initially at ambient, the sudden application of
constant non−zero power will result in monotonically
increasing temperatures. The highest temperatures will
eventually be reached, therefore, at steady state. Steady state
thermal data is often provided in the form of specific values
of thermal resistance or impedance. In addition, other charts
may be presented showing how steady−state thermal
characteristics typically depend on certain external
conditions, such as the amount of heat spreading metal that
has been provided on the application board for the specific
device in question. In the case of multiple−junction devices,
there may be a matrix form of the steady state thermal
characteristics as well.

Theta (�) and Psi (�) Numbers
Theta (�), sometimes denoted R�, values are true

“thermal resistances.” That is, they tell you that if you know
the temperatures at two points (connected by the thermal
resistance) then the amount of heat that flows from one point
to the other is completely determined by that resistance.
Conversely, if you know the heat flow along the path, and
you know its resistance, then you can predict the
temperature difference that will result due to this heat flow.
If there are other heat paths in the system, they have their
own characteristics, and they are independent of what
happens along the particular path of interest. Typical units
would be °C/W.

In the context of semiconductor packages and devices,
there are usually going to be, at most, two “true” thermal
resistances, theta−JA, and theta−JC, and these must be
defined carefully. But the single most important fact about
these values (what, indeed, makes them “theta”s), is that the
total power dissipated by the device flows between the two
“points” being described (the junction being one “point,”
and either ambient or the case temperature being the other
“point”). That is, there are no extraneous, parallel thermal
paths in the system allowing some of the heat to “leak” away.
All heat leaving the junction, the first point, eventually
arrives at or passes through the other point – either ambient
or case, respectively.

Mathematically, we define these two quantities as
follows:

�JA �
TJ−TA

Pd
(eq. 1)

(eq. 2)�JC �
TJ−TC

Pd
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Knowing the appropriate values, actual operating
junction temperature therefore could be predicted according
to:

TJ � �JA · Pd � TA (eq. 3)

(eq. 4)

or

TJ � �JC · Pd � TC
For theta−JA, obviously, by definition, all the power

leaving the junction eventually arrives at ambient, hence the
ratio of this temperature difference over the total package
power, is a true system thermal resistance. A data sheet may
provide one or more theta−JA values for different
representative mounting situations. For instance, min−pad
board values, and 1″ pad board values; or perhaps a chart of
theta−JA vs. copper spreader area. But these values may not
apply to a real application, even if the copper area is
“correct.” Other variables, such as the presence of other
power dissipating devices, the nature of the air flow
conditions, the thickness and detailed layout of the spreader
itself, will all affect the value.

For theta−JC, the two points are the junction (J), and the
“case” (C) – it’s the definition or selection of the “case”
temperature that makes the challenge here. If we are justified
in making the assumption that 100% of the dissipated power
actually flows past the “C” point we’ve defined, then again,
the ratio of this temperature difference to the total package
power, is a true thermal resistance. Typically the only test
situation that results in a reasonable approximation of this
100%−of−heat condition is a coldplate test, and that being
for power packages clamped directly onto the coldplate.
(Even in such a test, from 1−10% of the power may “leak”
out through other paths, depending on the particular package
design and test fixturing.) One must still carefully designate
the location of the “case” measurement. For a good theta−JC
measurement, the “case” is usually defined as the center
point of the heatsink at the heatsink/coldplate interface,
which will be the hottest point on the coldplate, but not
necessarily the coldest point on the “case” of the device at
all. One practical difficulty in making a good theta−JC
measurement, is doing so without disturbing the heat flow.
A groove in the surface of the coldplate may reduce the
interface area significantly; holes bored through the
coldplate disturb the heat flow as well, though if small
enough, perhaps not as much. Another issue is the question
of how well the case−measuring thermocouple makes
contact with the case, when it can’t be seen. As an
alternative, measuring the temperature at the exposed edge
of the heatsink (say on the tab of a Dpak or TO220) may
circumvent both these difficulties, but it may yield a
significantly different result (perhaps 20−40% higher than
the “true” theta−JC value). Clearly, to use a theta−JC value
successfully in a real application environment (i.e. to predict
the actual junction temperature), the application must assure
that virtually 100% of the device power flows through the
case. Finally, a theta−JC value as measured on a coldplate,
may be vastly different than a corresponding “psi−JC”
value, even through the thermocouple location may be

identical for both measurements (see following discussion
on “psi” values). This arises because the fraction of the heat
passing through the “case” point will very likely be
substantially less in a non−coldplate test setup, as compared
to the coldplate setup. Indeed, if the theta−JC value was
derived from a 100%−of−heat condition, it is axiomatic that
any corresponding psi−JC value will be lower. For instance,
if only 10% of the heat flows past the “case” in a
non−coldplate mounting situation, then psi−JC will be one
tenth of the theta−JC value!

Clearly, the difference between theta−JA and theta−JC is
that theta−JA necessarily includes the entire system, not just
the package, whereas theta−JC is idealized as a “package
only” property. It is not at all unusual for theta−JC to be a
small fraction of theta−JA, which is a way of saying that the
thermal design of the external environment is more
important in determining the operating junction temperature
of a device, than is the thermal design of the device itself.

The problem with these values appearing on data sheets,
is that theta−JA will very likely not apply to a particular
customer application (because there will be differences in
the system external to the package, such as air flow
conditions, amount of metal thickness, area, and layout in
the board, proximity and power dissipation of neighboring
devices, and so forth). So theta−JA may seem convenient,
because all you need to know is the ambient temperature. In
reality, unless the application is exactly like the thermal test
situation, a different theta−JA will apply, and the difference
may be substantial. Data sheets may present either or both
“min pad” values and “1″ pad values”, but the real theta−JA
in an application may be better than the “1″ pad” value, or
it may be worse than the “min−pad” value. In any event, if
the system is different, the data sheet’s theta−JA is not really
a useful value.

Theta−JC may be more useful, in the sense that it may
actually describe the device’s characteristics in the real
application (including the requirement that essentially
100% of the heat pass through the identified case location).
Even so, it is truly useful only if the external system is fully
defined as well. The problem here is that one cannot simply
assume that the case temperature can be controlled to an
arbitrarily chosen value; rather, the design of the external
thermal system must ensure that this is true for the amount
of power being dissipated by the device. For example,
consider a particular TO264 power transistor, with a
theta−JC of 0.4°C/W. If max Tj is 150°C and the case could
be held at 25°C, then one could in principle dissipate
312.5 W �Pd � (TJ−TC)��JC�.

However, what sort of external system can “hold” the case
at 25°C? How about a water−cooled coldplate capable of
sinking 400 W, whose thermal resistance is approximately
0.2°C/W, measured from the mounting point on the
coldplate to the “infinite” coolant supply? To sink 312.5 W
implies that the coolant itself would have to be held at
(0.2°C/W * 312.5 W, or) 62.5°C below case temperature, or
−37.5°C! In fact, a realistic “real world” application of this
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TO264 device might utilize a forced−air−cooled heatsink,
with a hundred square inches of surface area, and a net
thermal resistance of 0.2°C/W (much similar in capacity to
the water−cooled coldplate just illustrated). But in this
real−world system, it is ambient, not the device case, that is
limited to 25°C. Since the total system resistance (theta−JA)
is 0.6°C/W (0.4 for the device, plus 0.2 for the heatsink),
actual maximum power dissipation is really 208 W, and the
case temperature at steady−state equilibrium will be about
66°C.

Psi (�) values, as contrasted with theta values, are not
really thermal resistances, though they have the same units.
JEDEC defines the term as a “thermal characterization
parameter.”1 It is nothing more than the ratio of the
temperature difference between two selected points in a
system, and the total power dissipation of the device in
question. The equation defining it is essentially identical to
that for theta, that is:

�Jx �
TJ−Tx

Pd
(eq. 5)

(eq. 6)

and

�xA �
Tx−TA

Pd

�Jx ��xA �
TJ−Tx

Pd
�

Tx−TA
Pd

� �JA (eq. 7)

observe

Note that we have defined two variations, one referring
the junction to some arbitrary package location x; the other
referring the arbitrary package location x to ambient. This
misleadingly suggests that the former is mainly a “package”
characteristic, and the latter mainly an “environment”
characteristic. The reality is that the chosen package location
merely arbitrarily divides the overall system theta−JA into
two pieces that are guaranteed to add up to the correct total
(Equation 7). It does not follow that location x will have a
predictable temperature between the two endpoints as the
environment changes around it; it will only be predictable
(from either endpoint) if the environment does not change.
(Contrast this with theta−JC, which, at least ideally, will
always yield a predictable temperature relative to the
junction, regardless of what happens to the environment
beyond the case.) Be that as it may, just as with theta values,
knowing the appropriate inputs, operating temperatures
might be predicted according to:

TJ � �Jx · Pd � Tx (eq. 8)

(eq. 9)

or

Tx � �xA · Pd � TA

1 Guidelines for Reporting and Using Electronic Package Thermal

Information, EIA/JESD51−12, Electronic Industries Association, 2005.

In the context of semiconductor devices and packages,
common data sheet psi values include psi−JLn (where a
particular lead, n, is designated), psi−JT (where T represents
the case top), psi−J−tab (where the tab is the exposed
heatsink tab on a suitable power device), and psi−J−board
(where perhaps the board directly underneath the center of
the package is designated, for instance for a BGA style
package).

It is usually possible to know the total power dissipation
of the device in question, but it is far more difficult to know
what fraction of the heat flows out through the case top, vs.
through the leads, vs. through the air gap under the package,
and so forth. Though it may be feasible to make temperature
measurements at myriad locations all over a package, it is
difficult or impossible to make actual heat flow
measurements along selected paths. Further, those paths
may vary dramatically in their actual thermal resistances as
connected to the junction, and in their individual sensitivity
to external changes. Therefore, as mounting conditions vary,
the relative heat flow along the various possible paths may
shift significantly. Psi values reported on data sheets,
therefore, must only be used for application temperature
estimates, when it is known that the heat flow is similarly
distributed. The minimum stipulation for valid application of
a psi value is that the same fraction of heat flows along the
particular psi−path as occurred during the lab measurement
(regardless of how much difference there might be along
other paths); generally this will be difficult or impossible to
ascertain.

Consider a particular example of a 2−leaded axial device.
It was measured on a thermal test board having a symmetric
layout with equal amounts of trace metal to each lead. In this
test scenario, theta−JA was 45°C/W, and psi−JL was
15°C/W (same value to each lead, due to symmetry).2 Now
in a particular application, the device is mounted on a board
with a 1” square pad allocated to just one of the two leads;
the other lead has minimal traces (identical to the original
test board). Measurements made on this application board
now yield theta−JA of 31°C/W, and extremely
non−symmetric values of psi − JL1 = 21°C/W and psi − JL2
= 9°C/W. Depending on which lead temperature were to be
used as the reference point, it should be clear that if the data
sheet value for psi−JL was used to predict junction
temperature, it would either result in extremely high or
extremely low values. (Obviously, if psi values were
measured for the actual application, there would be no
reason to use the data sheet value. The emphasis here is on
the extreme difference that the actual psi values have as
compared to the data sheet, even though the package is the
same, and one of its leads is even mounted exactly as during
the data sheet measurements.) If one returns to the concept
of true thermal resistance, it may be seen that in the original
2 It is unfortunate in this particular example that the data sheet was
pre−1995, and referred to the value as “Thermal resistance,
junction−to−lead,” with no explanation of how to apply the value. So is it
a psi, or a theta? Nothing like a small two−to−one discrepancy in
resulting calculations!
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lab measurements, the true theta−JL value would have been
30°C/W, as each lead carried exactly one half the total
power.

that is, �JL �
TJ−TL
�Pd

2
� � 2�JL (eq. 10)

In fact, knowing that theta value would allow one to
predict junction temperatures precisely, in any application
environment, however non−symmetrically the heat
spreading metal was arranged, so long as both lead
temperatures are measured instead of relying on just one,
specifically:

TJ �
�JLPd � TL1 � TL2

2
(eq. 11)

Using Equation 10, it may be of interest to rearrange this
expression into:

TJ � �JLPd � avg(TL1, TL2) (eq. 12)

Thus in this particular two−leaded device example, it is
seen that even psi−JL may be used to advantage if both lead
temperatures are measured in the actual application. In more
complex package situations, however, there may be multiple
leads, some of which have direct connections to the internal
“flag” (where the silicon is mounted) and some don’t, or
there may be other significantly non−symmetric thermal
paths. Then, changing the amount of metal trace area
associated with individual leads, or adding an external
heatsink to the exposed case, may drastically modify the
relative heat flows as compared to those present when the
data sheet values were determined, and may thus completely
invalidate the use of the published psi values. As a rule, when
it comes to choosing which lead to characterize for a data
sheet, it is preferred to pick the one that carries the largest
fraction of the power, if such a lead can in fact be identified.
This may well be the one with the largest psi−JL, especially
if it has a direct internal connection to the flag and has been
given a disproportionately large heat spreader on the
outside. Such a value will be the least sensitive to modest
changes in the actual application environment. On the other
hand, if a data sheet specifies a lead which is known not to
have the most heat flow, then one cannot be sure in a
particular application, whether the actual psi value will be
higher or lower than that provided in the data sheet (the
two−leaded example above bearing witness).

Multiple Junction Devices and Matrix Formulations
In referring to multiple junction devices, we are generally

referring to devices that contain relatively independent
electrical components, for which the ratio of power
dissipation between the various possible “junctions” may
vary widely. This might be an analog device with two
different regulated voltage outputs, driving vastly different
loads (that from one application to another may differ
substantially). It might be a dual−rectifier package, which in
one application utilizes both channels fairly equally, but in
another application perhaps utilizes one in preference over
the other. It might be a single application that from time to

time moves between two vastly different operating points
(different power distributions); which condition is “worst
case” needs to be determined. So long as constant power
conditions are considered, a matrix approach utilizing
steady state values is a concise method of describing the
system’s thermal characteristics. It relies on the principle of
linear superposition, which states that the temperature rise
at any given point in the system is the sum of the
independently derived temperature increases attributable to
each heat source in the system. Stated in matrix form, we
would say it this way:

	�TJ1
�TJ2


 � ��1 �12
�12 �2

�	Pd1
Pd2

 (eq. 13)

Note that the matrix notation is simply a shorthand version
of the following pair of equations:

�TJ1 � �1 · Pd1 ��12 · Pd2 (eq. 14)

�TJ2 � �12 · Pd1 � �2 · Pd2
(Note that if every matrix element is referenced to

ambient, for instance, then each temperature rise so
computed should be added to ambient, in order to predict the
actual temperatures resulting from the two applied power
dissipation values). For a two junction device, this means
that the temperature rise of the first junction is the sum of its
“self heating” characteristic, times its own power
dissipation, added to the “interaction” characteristic (how
much each junction heats the other) times the power
dissipation of the other junction. Another principle
applicable to linear systems is known as reciprocity, which
states that the amount by which one junction heats another
(in terms of temperature rise per unit power input) is equal
to the amount that it will be heated by the other, hence the
symmetry of the matrix across the main diagonal.

Observe that here we have used psi to represent the
interaction terms. This is strictly correct because in general
we cannot say that any particular fraction of the heat
dissipated at either junction is passing “through” the other
junction; some of it certainly flows that way, causing the
temperature to rise there (indeed, if it did not, the interaction
term would be zero and the two junctions would be
completely thermally independent). On the other hand, we
have used theta for the self heating terms (along the main
diagonal). This is not strictly correct unless we have the
assurance stipulated in the preceding discussion of theta
values, that is, the reference point to which theta refers is the
ultimate destination of 100% of the power dissipated by (in
this case) both junctions. However, even the basic matrix
formulation itself, as illustrated above, is an
oversimplification of the required mathematical description
if multiple reference temperatures are needed.

Suffice it to say, for idealized simple situations, a matrix
formulation typically will consist of theta−JA self heating
and psi−JA interaction heating values, or possibly theta−JB
and psi−JB values, where a board location central to the
package is identified and presumed to represent the major
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heat flow path and a common reference temperature. One
way of describing the situations in which this simple matrix
approach is valid, would be to say that as long as there is a
single temperature boundary condition (for instance,
ambient, or board), the formulation is applicable. (Then that
temperature reference, or boundary condition, becomes the
common value to which all temperature increases are
related.) But in typical situations where lead, board, or
case−top temperatures have been characterized using psi
parameters, these additional temperature locations are not
true boundary conditions, rather auxiliary reference points
where the temperature is measured but not controlled.

Even with this restriction, it should be noted that a matrix
description can be readily extended to any number of
junctions and auxiliary temperatures, where every heat
source of interest yields a self heating theta, and a set of
interaction psi’s, for every other junction and point of
interest. For example, if we have three heat sources, and one
lead and one board temperature reference location, we
would have:

�
��


�

�TJ1

�TJ2
�TJ3
�TL1
�TB

�
��
�

�
���


�

�J1A �12 �13

�12 �J2A �23
�13 �23 �J3A

�L1�1A �L1�2A �L1�3A
�B1A �B2A �B3A

��
�

�
	Pd1

Pd2
Pd3



(eq. 15)

Here we do not have a square matrix, because we are using
psi characteristics to describe the temperature at some
points in the system that are not themselves heat sources. (If
they were heat sources, we could expand the matrix back to
a larger square with two additional heat input variables in the
heating vector, but this would necessarily require two
additional columns of psi characteristics that need to be
measured before computations may be completed. Clearly
it is much simpler, if those points really are unheated, to
avoid the extra work.) Perhaps obviously, the symmetry
consequent of the reciprocity theorem applies only to the
square sub−matrix representing the temperatures at only the
heat sources. Once again, the preceding matrix notation is
simply a shorthand version of the following system of
equations:

�TJ2 � �12 ·Pd1 � �J2A ·Pd2 ��d3 ·Pd3

(eq. 16)

�TJ3 � �13 ·Pd1 ��23 ·Pd2 � �J3A ·Pd3

�TL1 � �L1�1A ·Pd1 ��L1�2A ·Pd2 ��L1�3A ·Pd3

�TB � �B1A·Pd1 ��B2A ·Pd2 ��B3A ·Pd3

�TJ1 � �J1A ·Pd1 ��12 ·Pd2 ��13 ·Pd3

to all of which, ambient must be added.
In real life, you would measure three power levels and

three temperatures (lead, board, and ambient). The matrix
method then allows you to calculate five temperatures: the
three junctions as well as the lead and board temperatures.
If there is agreement between the calculated temperatures
and the measured values (two opportunities: lead and

board), you would then have some confidence that all the
characterization inputs (theta’s and psi’s) were valid for the
system under consideration. If there was a significant
discrepancy between the calculated and measured values for
lead and board, you would have an indication that heat flow
distribution in the actual application differs significantly
from that during which the psi’s originally had been
deduced, casting into doubt the calculated junction
temperatures as well.

For completeness, we shall demonstrate the additional
complexity required for a true multiple heat source, multiple
temperature boundary condition model. Suppose we have a
six−leaded package with two independent silicon devices
(i.e., two junctions, meaning two heat sources) inside. If we
can make temperature measurements at all six leads, under
the assumption that virtually 100% of the heat generated
internally, at either junction, must exit the package along one
of the leads, then we could write the following matrix
equation, where each lead is treated as a separate boundary
condition:

	TJ1
TJ2

� ��11 �12

�12 �22
��
�

Pd1 �
TL1
�1L1

�
TL2
�1L2

�
TL3
�1L3

�
TL4
�1L4

�
TL5
�1L5

�
TL6
�1L6

Pd2 �
TL1
�2L1

�
TL2
�2L2

�
TL3
�2L3

�
TL4
�2L4

�
TL5
�2L5

�
TL6
�2L6

�
�
�

(eq. 17)

Two important differences exist between this complete
model and the previous, simpler matrix formulation. First,
the left hand side of the equation is the actual junction
temperature prediction, not a temperature rise over some
common reference temperature. Second, the temperature
boundary conditions (of which there are six in this
“complete” model) show up as quasi−heat−inputs. Each has
its own associated weighting, expressed here as yet another
psi value. So even though there are only two heat sources,
there are actually 16 (15 independent) distinct parameters
characterizing this model. Obviously it is one thing to state
that such a model may exist; it is quite another thing to
experimentally (or otherwise) derive all these coefficients.
This is the domain of “compact models,” for which a
tremendous amount of literature and research has been
generated over the past decade. The minimum number of
independent external boundaries necessary for a certain
desired level of accuracy, whether (and how) temperature
nonlinearities must be considered, and even the internal
structure of the model, are all significant issues that must be
addressed for a thorough development of such a model.

Theta−JA vs. Copper Area
One of the most problematic issues in providing

manufacturer’s thermal data lies in choosing what data is
helpful for purposes of illustration, but which may
unfortunately grossly misrepresent how the package will
actually perform in a customer’s application. An excellent
example of this is in the variation of Theta−JA with copper
area, as shown in the next figure.
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Figure 1. Theta−JA vs. Copper Area for a Dpak

The two parameters explicit on this chart are the thickness
of the heat−spreading copper (one curve for each of two
representative thicknesses), and the copper area (the
x−axis). Even considering just these two items, many
questions arise. For instance, what should be done if the
copper thickness is outside the range provided? Indeed
(though it would probably be considered ridiculous to try to
be this precise in the first place), should one interpret
linearly even within the range provided? What happens if
the copper area falls below the left end or above the right end
of the curves provided? Is a linear extrapolation
appropriate? Should a curve (of what type?) be fit to the
points known, and extended (and if so, how far is
appropriate)? (Certainly, any polynomial extrapolation to
the right will eventually pass through or end in physically
impossible values, such as zero, or negative values. Worse,
it may even increase as copper area increases.) Does the
metal area include the traces directly associated with the
device of interest? If so, clearly at some point toward the left
ends of these curves, one transitions from large “blocky”
areas to long skinny areas. Surely the heat spreading ability
will shift markedly at this transition. So if in a particular
application, a different amount of purely “trace” metal is
utilized than that upon which this chart was derived,
significant departures from an “obvious” extrapolation will
occur.

However, beyond those explicit parameters, there are
many very important factors not explicit on this chart
affecting the actual theta−JA value that will be experienced.
(And even if they were known, perhaps through
conscientious provision of footnotes by the manufacturer,
and diligent reference to the same by the customer, the same
questions would remain regarding how to handle deviations
from the stipulated conditions.) For instance, how large is
the board beyond the copper area? How much airflow is
there? Is the airflow the same on both top and bottom of the
board? If the air is “still” (also known as “free convection,”
being driven by the buoyancy due to the temperature
difference in the air as it is heated by the device in question),
what is the orientation of the board with respect to gravity,
and how does it change with orientation (significantly)?

Finally, of course, how near are the nearest neighboring
heat sources? Do they share common metal (i.e. ground

planes)? How much separation is there between metal areas
not electrically connected?

The moral here is that these charts may be used only to
gain a very, very rough idea of just how much leverage one
might have, for the device of interest, in adjusting overall
system thermal characteristics. Obviously the starting point
is to subtract out the “intrinsic” device characteristics
(psi−J−lead, for instance), and see if what’s left over might
possibly give enough margin for a required compensation.
If there is, a comprehensive analysis of the external thermal
system is mandatory, taking into account at least all the
variables that have been highlighted in this discussion.

Transient Data
Transient results may be presented in the form of heating

curves, duty cycle curves, thermal−RC−network models, or
thermal−RC mathematical models. In conjunction with any
of these descriptions may also be found a “sqrt(t)” surface
heating model, suitable for particularly short duration
heating situations outside the scope of the other approaches.

Heating Curves
A heating curve (also known as a transient response curve,

or a single−pulse heating curve), shows how the junction
temperature of a device increases with time, given a constant
power input at the junction, in some particular environment.
In the following chart, it is clear that for times shorter than
about 0.2 s, the device in question has the same thermal
transient response independent of what sort of board it is
mounted on. Somewhere between 0.1 and 1 s the effects of
the environment (the board) start to be felt, and clearly by
1000 s the difference between those two particular example
environments (about 50°C/W) is larger than the original
contribution due to the device itself at 0.2 s (5−6°C/W). If
two different environments are depicted on the same heating
curve chart, therefore, one gets an idea as to when the
environment begins to enter into play, and how much is due
to the package alone.

Figure 2. Typical Heating Curves
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It may also be useful to note the point(s) on the transient
heating curve where some of the other “steady state” theta
or psi values occur. For instance, a psi−JL or psi−JB value
may be found to occur roughly at the point where two
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different environment curves separate. Possibly two
different psi−J−tab values are given, one for each of the
mounting conditions. In that case, it will be seen that they
occur at roughly the same time along the two curves. One
may also, therefore, use the psi−JL values, if provided, to
help ascertain the time scales at which package effects “end”
and environment effects “begin,” even when only one
environment’s curve may be presented (for instance, if a 1″
pad curve is given, but no min−pad board curve).

The use of a heating curve is straightforward, in the
situation where constant power is applied to a device. If it is
desired to know how hot the junction has become at a certain
moment, the R(t) value is simply looked up and used just as
if it was a theta value:

TJ(t) � R(t) · Pd � TA (eq. 18)

Sometimes heating curves are referenced to lead
temperature or board temperature, rather than ambient, so
one must pay attention to this detail in making use of the
curve. It should be evident that if the curve ends up at the
steady state theta value for the particular application and
environment, then this computation yields the steady state
junction temperature. The heating curve simply provides a
time−variable generalization of the concepts previously
discussed in the steady state context.

Heating curves may be used to estimate more complex
power situations. For complete generality, a non periodic
power input with ramps or smooth curves, rather than square
edges, can be modeled using the single−pulse curve.
Figure 3, illustrates the basic steps involved in such an
analysis.

Figure 3. A Complicated Non−Periodic Power Analysis
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Beginning with the upper diagram, the black trace
represents the actual power input. The orange squared−off
trace in that same diagram is an approximation of the actual
power input, based on rectangular blocks of constant power.
Usually an attempt is made to keep the total energy input
correct, i.e. to make sure the area under the approximating
curve is the same as that under the true power curve. The
points labeled 1−4 are points at which a temperature estimate
is desired. Points 1 and 3 are intended to capture the local
peak temperatures, and point 2 is intended to capture the
local minimum temperature. This means that the choices of
the precise times for the square−edged approximation will
dictate the times at which these local extrema will occur, and
will not necessarily be at the exact times dictated by “real”
power input waveform. In the second diagram, the
approximated power input (now shown as a dashed orange
line), is broken down into a sequence of steps of constant
power, labeled A−L. The relative amplitudes of the power
steps are the changes in power as each new step is
introduced. Thus note that A, C, E, and G are positive going
steps, and all the others are negative going steps. In the third
figure, the transient responses due to each step of power are
indicated. Each response is the basic single−pulse response
scaled by the amplitude of the power step in question. In the
bottom figure, the resulting temperature profile is
illustrated, and the net contribution of the various pieces
needed to compute the temperature (at the four points of
interest) is indicated. The response at point 4 is shown
mainly to illustrate that the temperature may be computed at
any time of interest, whether or not it corresponds to a
change in power; all that is needed is to include every step
(in this instance, all of them) that has begun prior to the
moment of interest, computing its contribution based on the
elapsed time since each initiation. Clearly this could be done
anywhere during the power input profile, for instance,
anywhere between tF and tG.

One difficulty that sometimes arises, is that an R(t) curve
may need to be read with great precision when no such
precision is apparently available. The preceding example,
for instance, requires several pairs of nearby R(t) values to
be read accurately, so that a small difference between them
may be used to calculate a temperature change. The
recommended procedure is to assume that over small
intervals, the transient curve can be represented by a power
law (which will be a straight line segment on a log−log
graph), of the form:

R(t) � a · tn (eq. 19)

Given two points far enough apart to span any particular
range of interest (yet close enough together to be connected
by an effectively straight line segment), the power law
exponent n may be calculated using:

n �
log�R(t2)�R(t1)]

log�t2�t1]
(eq. 20)

Then the value a small distance � from a nearby value at
t may be calculated from:

R(t � �) � R(t)�1 � �

t
�n (eq. 21)

Yet a different approach to using the single−pulse heating
curve may be possible for estimating peak temperatures of
short wave trains with long gaps between the trains, but
repeated periodically. For instance (refer to Figures 4 and 5),
consider ten, 100 W pulses, with a 1−millisecond period and
a 5% duty cycle (i.e. 0.05 ms on, 0.95 ms off); then every
100 milliseconds, repeat the same pulse train. Do this for 45
seconds. The question is, what is the highest temperature
reached during this scenario?

Figure 4. Periodic Short Pulse Trains Problem
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100 ms 100 ms

100W
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5.5 W
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100 ms
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100W

Before we can answer that, we must first determine when
this will occur, which is straightforward in this example. It
will occur at the end of the 10th pulse at the end of the last
pulse train at the end of the 45−second point (i.e. the end of
the very, very last pulse to be applied). So now that we know
when to find the temperature rise, we may find the amount
of the temperature rise, which we can break down into three
pieces.

Suppose we’re working with the device whose transient
response is given in Figure 2, on the 736 mm2 Cu area board.
First, as seen in the upper portion of Figure 4, there is an
overall average power dissipation to be concerned with. Out
of every 100 ms, there are 10x0.05 msec of 100 W power
applied – and the power is zero the rest of the time. So we
have an average power of (10*100*0.05/100) = 0.5 W, when
looking at the overall waveform. This average power adds
a “background” temperature rise to the system, which we
thus obtain by pretending there is a constant 0.5 W of power
applied for 45 s (last portion of Figure 4). Clearly in the
environment we’ve chosen for this example, the overall
system hasn’t reached steady state by 45 s. But from the
single−pulse curve, we can say that at 45 s, R(t) is about
30°C/W, hence the background temperature rise will be
0.5 W * 30°C/W, or 15°C.
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Similarly, each pulse train of 10 fast pulses may be viewed
as a short block of “constant” power that rides on top of this
background average. Over a block of 10 fast pulses, we have
an “average” power of (10*100*0.05/9.05) = 5.5 W (note
that from the beginning of the first of ten pulses, to the time
the 10th pulse turns off, is 9.05 ms). Between each of the
10−pulse trains, the power is off for so long (90.95 ms) that
the temperature will basically fall all the way back to the
“background” temperature rise, whatever that may have
been at the beginning of the current train (which, again, is
what ends up being about 15°C by the 45 s point in the
problem). So again, reading the single−pulse curve at
9.05 ms, we find R(t) of about 3.6°C/W, so at the end of the
10th pulse within each brief train, the average temperature
rise will be (5.5 – 0.5) W * 3.6°C/W, or about 18°C. (Note
that we have subtracted out the 0.5 W of “background”
average power, so as not to double−count it in computing the
temperature rise of the average pulse train.)

Finally, we have to ask what the temperature rise of each
individual 100 W pulse is around the quasi−average
junction temperature of this question. We’ve already
determined that by the end of 45 ms, 0.5 W will have
translated into a 15°C rise, and another 5 W will result in a
net 18°C rise between the first and last pulse of the ten, every
time a 10−pulse train fires off. So what happens on that very
last pulse of each ten? 94.5 W of the 100 W (having already
accounted for the effect of 5.5 W), goes into “spiking” the
temperature on top of whatever it was just before that pulse
started. Again, from the single−pulse heating curves,
R(0.05 ms) is about 0.45°C/W, so a final 94.5 W pulse adds
another (94.5*0.45=) 43°C to the cumulative temperature
rise. Our conclusion, therefore, is that the peak temperature
at the end of the final pulse at the 45 s point in the example,
will be 15+18+43=76°C above ambient. Clearly, due to the
lack of precision in reading the single−pulse response chart,
there is some inherent uncertainty in this result. If more
accuracy than this is desired, thermal RC models may be
used. These will be discussed subsequently. Before this
topic is addressed, however, another application or
extension of the use of transient heating curves needs to be
covered.

Duty Cycle Curves
A transient heating curve may also be known as a “single

pulse heating” curve. This is because it is derived from either
an experiment or a model that produces the junction
temperature rise in response to a sudden application of
constant power – the longer the heating power, or “pulse,”
is applied, the hotter the junction. Clearly, the heating power
could be turned off at any moment, and the temperature rise
at that instant would be known – so whether the pulse is in
reality turned off, or simply continued as more data is
collected at longer and longer times, the resulting plot may
be interpreted as being the result of a single pulse whose
“width” is indicated on the x−axis. This leads us naturally to
the question of what happens if a pulse is repeated
periodically, rather than applied once and never again (or in
any other way non periodically, as in the previous
examples).

If a pulse train of square pulses, of equal width and
regularly spaced, is applied to a device, it turns out that the
single pulse heating curve (just described) may be
transformed into a family of curves, each of which
represents the peak junction temperature that will be
eventually reached once the pulse train has been applied for
a long enough period of time (see AND8219/D). These
curves are generally called “duty cycle” curves, and are
parameterized by the percent of “on” time. In Figure 6
following, the single pulse curve for the 1” pad thermal test
board, shown previously in Figure 2, has been so
transformed, and the resulting family of duty cycle curves is
presented.
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Figure 6. Typical Duty Cycle Curves

�Tpeak = Pp ⋅ R(t,d)

The x−axis of the chart is the individual pulse width, that
is, the “on” time. So if the pulse width is “t” and the total
length of a cycle (on time plus off time) is “p”, then the duty
cycle, d, will be the ratio of t/p (and is usually expressed in
terms of percent, as shown in the figure). To read the chart,
then, one figures out the percentage of “on” time for the
pulse train of interest, and then looks up the appropriate
transient response value for that specific “on” time (on the
corresponding % duty cycle curve). This gives a value, often
denoted R(t,d), in units of °C/W. Since these are square
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waves, the peak power is the height of the individual pulses
(note also that the average power will be d*Pp, the duty cycle
times the peak power). Note that to calculate peak
temperature rise, one must use the peak power for the pulse,
not the average power.3

The most common mistake made in using duty−cycle
curves, is that they may only be applied for situations where
the original single−pulse curve was the “correct” curve for
the application environment under consideration. This
means that it must end up at the correct steady state value.
If the single pulse curve was for a min−pad board, for
example, then none of the resulting duty cycle curves may
be used for a 1″ pad application, regardless of how short the
pulses or what the duty cycle. To understand this, it may be
helpful to consider the mathematical expression typically
used to derive these curves:

R(t, d) � (1−d) · R(t) � d · R(�) (eq. 22)

If d is vanishingly small, then the result is the original
curve (which is clearly valid only until environmental
effects come into play). For any finite d, however,
regardless of how short the pulses of interest (i.e. “on” time),
the duty cycle curve carries along a contribution from the
steady state end of the original curve, i.e. R (�).

Given the appropriate single−pulse curve, if the pulse
train is periodic (even if not square), the square−wave duty
cycle curves may provide a time−saving approximation. For
instance, pulses that are trapezoidal or triangular in shape,
partial sinusoids, etc., may be approximated by square
pulses with the same total energy (i.e. area under the pulse),
where the height and width of the equivalent square pulse are
adjusted such that the end of the pulse coincides with the
moment of peak temperature – though this itself may require
some experience to judge when that is likely to occur.

Thermal RC Network Models
Thermal RC network models are an alternative way of

describing the same transient thermal response previously
discussed (see AND8214/D and AND8221/D). An entire
transient response curve can usually be represented in just a
handful of resistor and capacitor elements. If the correct
computational tools are readily available, RC networks may
therefore be a convenient and compact representation. Two
general forms of RC networks are possible, those with
grounded capacitors, and those in which the capacitors are
not grounded. These will be discussed in turn.
3  (Think peak power for peak temperature, if that helps. But to see why
this must be so, think about that single−pulse curve being the equivalent
of the 0% duty cycle case. For a given pulse width, if the only thing that
changed was the period, you’d be staying at the same position on the
x−axis while you moved from one curve to another. As the period went to
infinity, you’d end up on the 0%, or single−pulse, curve; but if the power
you multiplied by was the average power, you’d also be moving toward a
zero−power average, hence the temperature rise would approach zero
for a fixed pulse width. Obviously this would be incorrect − because
the whole point of the single−pulse curve is to give you the actual
temperature rise based on the power level of the pulse while it’s on, so
clearly you’re supposed to be using the instantaneous power level, not
the average power level.)
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C1 C2

R2

C3

R3

Cn

Rn

Ambient
(thermal ground)

Figure 7. Grounded Capacitor Thermal Network
(“Cauer” Ladder)
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Figure 8. RC Network Schematic
Capacitors (not shown) tie each node to ground

Figures 7 and 8 illustrate a typical “grounded−capacitor”
thermal ladder network. In fact, any network topology of
resistors might be chosen to represent a physical thermal
system (i.e. not just a linear string of resistors, but just as well
a star, a bridge, or whatever). The main advantage of a
grounded−capacitor network is that it derives from the
fundamental heat−transfer physics. Every node in the
network is connected to thermal ground through a capacitor.
If a simple chain of nodes is used, it is convenient to draw
the network as shown in Figure 7 because it resembles a
ladder, though because the lower edge of each rung attaches
directly to ground, the connections between the rungs are
essentially through the resistors. Often for clarity, the
capacitors are omitted entirely, in which case Figure 8 is an
equivalent model. A grounded capacitor network such as
shown in Figure 7 or 8 is known as a Cauer ladder.
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Because this network derives from the real physics, there
is at least a chance that experimental data from various
points within the physical system can be correlated with
specific individual nodes of the network model. As we move
from junction to ambient, for instance, we might find
physical locations corresponding to nodes in this order:
silicon junction, back of silicon chip, edge of leadframe, lead
(at package boundary), lead (at board interface), board (at
some distance from package), and finally ambient. Of
course, we may not have any intermediate location data to
correlate with, or the intermediate data we have might not
happen to land “on” a node of the model (rather, somewhere
in between nodes). Also, the physical system might not be
well represented by such a simple chain of resistors, so no
correlation might be possible except at the junction itself.
(This is actually quite typical, for in many environments, the
heat flow follows at least two separate and distinct paths
from junction to ambient, e.g. upward through the case,
outward through the leads into the board, and downward
through the air gap and thus directly to ambient on the back
side of the board. When the heat flow is believed or known
to flow along multiple parallel paths, it clearly would be
better to model the system with a more complex network.
Likewise, one would not expect to find a nodal correlation
with physical locations if the network was willfully chosen
as a simple ladder, when multiple significant parallel paths
were present.) Only in the case where a single path to ground
dominates heavily, would such a simple linear resistor
topology be expected to yield good correlations at the
intermediate nodes. Nevertheless, the point is that there
could be such a correlation.

Junction R1

C1 C2

R2

C3

R3

Cn

Rn

Ambient
(thermal ground)

Figure 9. Non−Grounded Capacitor Thermal Ladder
(“Foster” Ladder)

Non−Grounded Capacitor Networks
Contrast the grounded network of Figure 7, with the

non−grounded−capacitor network of Figure 9.  Figure 9 is a
true “ladder” of resistors and capacitors, and is sometimes
known as a Foster ladder. Each rung is joined to the next
rung (and only to the next rung) through both the resistor and
the capacitor; only the final capacitor is directly connected
to thermal ground.

Difficult though it may be to grasp at first, this network has
no physical basis. In the thermal/electrical analogy, a
thermal capacitor is simply an element that stores energy

based only on one temperature, that is, the temperature of the
node whose thermal mass it represents. (In contrast, an
electrical capacitor stores energy based on the difference in
voltage between its two terminals.) Hence a thermal
capacitor whose energy storage is based on a difference in
temperature between two ungrounded nodes in a network
(as is the case of most of the capacitors in Figure 9) has no
physical meaning. However, there is a mathematical
simplicity underlying Foster ladders. In their mathematical
description, one finds that each resistor−capacitor pair
contributes an “amplitude” to the overall system response,
and a unique time constant associated with that amplitude.
Indeed, a Foster ladder may be viewed as nothing more than
a schematic of the mathematical fit to a real transient
response curve. Given a transient response curve of junction
temperature vs. time, a series of exponential terms
consisting of amplitudes and time constants may be fit to the
curve to whatever degree of accuracy is desired. (More
terms usually implies a better fit.) Once done, the terms may
be interpreted as an RC ladder (i.e. the Foster ladder) where
each amplitude is a resistor, and each time constant is the
product of its associated resistor and a capacitor in parallel
with it.

Comparison and Contrast of Cauer and Foster
Ladders

Clearly, the mathematical terms representing (or
represented by) a Foster ladder may be added together in any
order to achieve the same sum. Thus the rungs (RC pairs) of
the schematic may be listed (or diagrammed) in any order
and still represent the same response! Because the overall
response (from junction to ambient) is immune to reordering
of the individual rungs (as long as each RC pair remains a
pair), the temperature that might be calculated at any other
node between any two rungs is physically meaningless. By
contrast, though a Cauer network must necessarily have a
mathematical representation comprising amplitudes and
time constants, one finds that every amplitude and every
time constant depends on every resistor and every capacitor,
in a highly complicated and algebraically intractable tangle
intimately dependent on the physical location of the
elements in the network.

Even so, Foster networks are typically drawn with the
rungs placed in order from junction to ambient with the
smallest values (i.e. fastest responding rung) at the junction
end, and the largest values (i.e. slowest responding rung) at
the ambient end. This is superficially similar in appearance
to a typical Cauer ladder, which almost always (and
necessarily) has the smallest elements nearest the junction,
and the largest elements nearest thermal ground. But in the
Cauer ladder, the choice is not arbitrary; rather it is imposed
by the intrinsic relationship between time response and
location in the model.
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So where does this leave us? A grounded−capacitor model
is most useful when a physically meaningful model is
required, for instance, to separate the package from the
environment in order to replace the environment portion of
the network with a different network, representing a
different environment. However, to best use a
grounded−capacitor model, a circuit simulating tool is
required. Of course, if a circuit simulating tool is being used
for thermal calculations, any complicated, time varying,
power input may be imposed on the circuit without
particular cost. Finally, multiple heat source models can be
built with equal facility, and again, arbitrarily complex
asynchronous power inputs at any number of nodes may be
managed without difficulty.

On the other hand, non−grounded−capacitor models are
mathematically very simple, and quite detailed thermal
calculations may be performed with spreadsheet based
tools. Though only the junction has the designed correlation
with physical reality in a non−grounded capacitor model, the
fact remains that if the model is capable of producing the
known transient response, applicable to the particular
environment in question, then it may be used successfully
for temperature predictions with arbitrarily complex power
inputs. Even multiple input thermal models may be
constructed using equivalent non−grounded networks.

It should also be mentioned that every Cauer ladder has a
Foster equivalent, and vice versa. The conversion from one
to the other is a non−trivial operation, but algorithms do exist
for that purpose. In ON Semiconductor data sheets,
generally the two equivalent networks are provided,
enabling a knowledgeable customer to take advantage of the
strengths of each.

Multiple−Junction Devices and Transient Response
In the preceding section, allusions have been made to

multiple−input transient models. Just as with steady state
descriptions of a thermal system, transient descriptions of
multiple−junction devices may be constructed. If a matrix
method is followed, the only difference is that every element
of the matrix is a function of time. For every heat source in
the device, there will be a “self heating” transient response
curve, and for every other point of interest in the system
(whether another heat source or a passive temperature
monitoring location) an “interaction” transient response
curve will exist.

Bounded by the same limiting assumptions, the principles
of linear superposition and reciprocity continue to apply.
That is to say, the time−varying response at any point in the
system may be treated as the linear superposition of its
response to each independent heat source, as if each heat
source was powered individually and independently of the

others. Further, the less intuitive truth of the reciprocity
theorem applies in the time domain: namely, the transient
response of point “A” in the network due to (constant) heat
input at some other point ‘B’, will be identical to the
transient response at point ‘B’, if the same amount of heat
input is applied at point ‘A.’ So in the matrix description,
symmetry across the main diagonal will still exist. Perhaps
the most powerful implication of the reciprocity theorem is
experimental: in effect, only half of the total possible
interaction thermal transient responses need be measured.

Circuit Simulators
Cauer models are of little use without a circuit simulator,

due to the messy algebra required to describe their
mathematical response. Thus, if a Cauer model is all that is
available (at least, if it consists of more than about two
nodes), a circuit simulator is a must. Of course, if a circuit
simulator is available, a circuit is a circuit, and it should
therefore be evident that both Cauer and Foster ladders may
be analyzed with equal ease. Indeed, for single−input
networks, there will be no difference in the overall approach,
only in the details of the network connectivity and element
values.

For multiple−input networks, the Cauer network will be
straightforward (see Figure 10). Recalling that a Cauer
network will have been derived on some premise of having
physical significance, the interactions between the various
possible heat sources (and possibly passive “boundary”
nodes) will be built into the topology of the network itself.
Resistors and capacitors will exist that “automatically”
provide the correct interaction responses due to heat inputs
at every source; reciprocity and superposition are necessary
consequences of the method. One simply enters the
grounded−capacitor Cauer model into the simulator, with all
nodes and interconnections explicit in the schematic, and the
task is done.

Tj1 (volts) Tj2 (volts)
Q1 (amps)

Q2 (amps)
Apply Q2 to Tj2 node

C11

C12

C6

C13

C14

R11
C21

C22

C5

C7

C23

C24

R21

R22R12
R33

R44R13 R23

R24
R14

R5

R6

R7

Apply Q1 to Tj1 node

time

time

Figure 10. Implementing a Multiple Input
Cauer Network in a Circuit Simulator
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A multiple−source Foster model is more complicated to
implement in a circuit simulator, and exactly how it is done
will depend on the features of the simulator available. Since
a Foster model is nothing more (in essence) than a schematic
of the mathematical fit to a transient response curve, the
resistors and capacitors in a particular “self heating” Foster
ladder will not correlate with the resistors and capacitors in
any of the interaction networks; nor will the self heating
Foster ladder elements of any two heat sources have any
correlation with each other, even though we may know that
there is much underlying common thermal path between the
two sources. Moreover, depending on how the Foster
ladders were derived, even the time constants between
various curves in the model may not match! (It may be
observed that if “closed form” Foster ladders are derived
from a Cauer model directly, at least the time constants will
be shared across all the self heating and interaction curves;
but if the Foster ladders are simply independent
mathematical fits to response curves, from whatever source,
there is no particular reason the time constants will match,
unless by intentional choice.) Again, depending on how the

Foster ladders are derived, there may even be “negative”
amplitudes (this is, in fact, guaranteed to occur in “closed
form” solutions to the interaction responses in a physically
significant grounded−capacitor models.) Clearly, if negative
amplitudes arise in the Foster representation, a circuit
simulator must permit negative resistances (and obviously
negative capacitors, since a positive time constant can only
result for a negative resistor, from its product with a negative
capacitor). Alternatively, the simulator must provide a
programmatic method of subtracting the response of one
node from another, so a negative contribution can be
constructed from positive sub−circuits. Similarly, to
implement a multiple input Foster model in a circuit
simulator, care must be taken to intentionally create
“summing” nodes that implement the principle of linear
superposition between the various otherwise independent
self heating and interaction heating portions of the overall
model. If the circuit simulating tool does not provide
features adequate for these tasks, a spreadsheet
implementation will be the best alternative. Figure 11
illustrates the possible steps.

Tself1 (volts)

Tpos2

Tneg2

Tj1
+

−

Tself2 (volts)

Tpos1

Tneg1

Tj2
+

−

identical networks of negative interaction
elements

identical networks of positive interaction
elements

different networks of self heating
elements

Q2 (amps)

time

Q1 (amps)

time

Figure 11. Implementing a Multiple Input Foster
Network in a Circuit Simulator

Assume self−heating amplitudes are all
positive, but some interaction amplitudes
are negative. For every amplitude/
time−constant pair (Ai, taui), the R’s of the
Foster ladder are the amplitudes, and the
C’s of the ladder are the tau/R values. So
to input the model into a simulator, you
have to convert the amplitudes and taus
into R’s and C’s. If simulator allows
summing junctions, but not negative R’s
and C’s, do this:

(1) Build separate self−heating networks for
each junction (Tself1 and Tself2)

(2) Build two identical interaction networks
comprising only the positive elements
(Tpos1, Tpos2)

(3) Build two identical interaction networks
comprising only the negative elements
(but make them positive) (Tneg1, Tneg2)

(4) Define power inputs Q1 and Q2
(5) Apply Q1 to Tself1, Tpos1, and Tneg1;

apply Q2 to Tself2, Tpos2, Tneg2
(6) Create summing junctions to collect

superposition of all voltages as indicated
(Tj1, Tj2)
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Spreadsheet Models
As previously described, Cauer models basically require

a circuit simulator, even for single−input models. For Foster
ladders, however, spreadsheet tools are convenient for
implementing both single input and multiple input models.
This is the consequence of the mathematical simplicity of
Foster models, and the triviality with which spreadsheets
permit superposition to be introduced. For instance,
consider the ease with which a constant power transient
response for a single−input Foster ladder may be written in
Microsoft® Excel. Suppose the following meanings are
given to certain cells in a spreadsheet:

cell A1 is the power level

cells B1:B10 are the amplitudes

cells C1:C10 are the time constants (where C1 is the time
constant for the B1 amplitude, and so forth)

cell D1 is the time after a constant power step begins

Then the Excel formula to calculate the temperature rise
at time D1 is:

{=A1*SUM(B1:B10*(1−EXP(−D1/C1:C10)))}

Though by no means necessary, it may also be noted that
by using Excel’s Name capability and judicious use of
absolute vs. relative reference notation, we can make this
formula more mnemonic, and easy to copy to different
locations for computing results at many different times.
Amending the previous example; the mathematical
expression of single−pulse heating curve in terms of
Foster−type amplitudes and taus:

R(t) ��n
i�1

Ri�1−e−t��i� (eq. 23)

Define Names

power $A$1

amplitudes $B$1:$B$10

taus $C$1:$C$10

time D1

We are now permitted the more readable formula:
{=power*SUM(amplitudes*(1−EXP(−time/taus)))}

If this formula was entered into cell E1, it could be copied
down into cells E2 through E100, for instance, resulting in
the time response at each of the times found in cells D2
through D100. The Table feature of Excel may also be used
to advantage to create a table of many values from a single
formula.4

As time varying power inputs are introduced, and multiple
heat sources are introduced, it obviously gets more
complicated, but remains quite manageable for a relatively
limited number of inputs and time steps. The method is that
illustrated earlier (example given in Figure 3), with the
following embellishments: (1) the temperature at any point
of interest is the superposition of the response at that point
due to all heat sources (so just as in the steady state case, if
a junction temperature is being calculated, there will
typically be one self heating contribution, and multiple
interaction terms); (2) a new “step” in time must be made
whenever the power input changes at any heat source, even
if there is no change in power at that instant at the point in
question (because the interactions will change, even when
the self heating contribution does not change).

RC Models and Short−Time Transient Response
It may be shown mathematically that when the time scale

is shorter than its fastest time constant, an RC model’s
transient response becomes proportional to time (i.e. linear
in time). This will not be a problem if (1) the time scale of
interest is somewhat greater than the fastest time constant,
or (2) if it is known that the linear response with time is
appropriate for the system under consideration. However, as
will be discussed subsequently, for many semiconductor
devices there is a range of time (typically between about 1
microsecond and 1 millisecond) when the concept of
“surface heating” closely approximates the real thermal
physics. In surface heating, device transient response is

4To those unfamiliar with “array” formulas in Excel, the preceding

example accomplishes some very powerful operations in a compact

notation. First, the use of the array syntax itself (the colon as part of a

cell reference) tells Excel to execute the same computation for each cell

of the range in turn; thus, since there are ten cells in each of the two

arrays identified, ten parallel computations result. This means that ten

different terms representing ten amplitudes and time constants, all

evaluated for the same time (D1), are calculated at once. Second, the

squiggly braces {} surrounding the formula indicate that (in this case)

the formula was actually entered into the spreadsheet with the

Ctrl−Shift−Enter keystroke, rather than the ordinary Enter keystroke. (In

other words, simply typing in squiggly braces does not accomplish the

same thing at all!) This tells Excel that we wish it to actually return all

the available array results in however many cells are assigned to the

formula. (More typically, this “array formula” entry method is used to

distribute the array results over an array of cells; for instance, if we had

selected the ten cells E1:E10 for the formula entry, typed the formula into

the formula entry blank, and hit Ctrl−Shift−Enter, one of each of the ten

individual array results would be listed in each of the ten selected cells.)

Here, however, we have no need to see all ten results individually, yet

we still wish to access them all even though only a single cell is the

target for the formula’s result. Thus, finally, we include the SUM function

to tell Excel to add up those ten individual results, rather than report just

the first one in the single cell we’ve picked for the location of the formula.
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proportional to the square−root of time, rather than linear in
time. Now a properly constructed RC model (i.e. one with
time constants and amplitudes so designed) is capable of
following this square−root behavior with excellent
accuracy, but only for time scales greater than the model’s
shortest time constant. It is therefore important, whenever
using an RC model, to consider whether the shortest time
constant is fast enough for the needs of the analysis. For a
Foster ladder, the fastest time constant is known exactly (the
smallest RC product in the model). For a Cauer ladder, a
good (although not exact) estimate of the fastest time
constant is similarly obtained as the product of the RC pair
closest to the junction. (In fact, ill−formed Cauer ladders,
depending on exactly how the R’s and C’s appear in order,
may yield actual fastest time constants several orders of
magnitude faster than that of the RC pair nearest the
junction; alternatively, ill−formed Cauer ladders may result
in Foster amplitudes that are infinitesimal, yet with finite
time constants. However, these are aberrations that do not
materially affect the ability of the network to respond to

square−root−of−time needs on the order of the RC pair
nearest the junction.) In any case, if the shortest legitimate
time constant is not smaller than the shortest time scales of
interest, and especially in the microsecond to millisecond
time scale, extreme caution should be taken in interpreting
RC model results. If a linear model is used when a
square−root model is appropriate, temperature changes as
predicted by the model will occur much too slowly, and
significant underestimates of maximum junction
temperatures may result.

With that caution in mind, the following table presents RC
models for the same D2pak device on two different thermal
test boards (basically min−pad and 1″ pad, with some extra
trace area included in the total area quantity). For each
board, both Cauer and Foster networks are given. It should
be emphasized that these Foster networks are in fact the
exact mathematical equivalents of the corresponding Cauer
networks. A number of the concepts addressed in the
preceding discussions may be illustrated.

Table 1. RC Networks (“R” values are °C/W; “C” values are J/°C; “tau’s’’ in seconds)

Drain Copper area (1 oz thick) 241 mm2 788 mm2 241 mm2 788 mm2

(SPICE deck format) Cauer network Foster network

241 mm^2 653 mm^2 units Tau Tau units

C_C1 Junction Gnd 6.3269E−6 6.3269E−6 W−s/C 2.9892E−7 2.9892E−7 sec

C_C2 node1 Gnd 2.9939E−5 2.9939E−5 W−s/C 4.3949E−6 4.3949E−6 sec

C_C3 node2 Gnd 8.9817E−5 8.9817E−5 W−s/C 3.8122E−5 3.8122E−5 sec

C_C4 node3 Gnd 1.9877E−4 1.9877E−4 W−s/C 2.9542E−4 2.9542E−4 sec

C_C5 node4 Gnd 1.3388E−3 1.3388E−3 W−s/C 2.3055E−3 2.3055E−3 sec

C_C6 node5 Gnd 2.5099E−2 2.5099E−2 W−s/C 1.2749E−2 1.2766E−2 sec

C_C7 node6 Gnd 3.1191E−1 3.1815E−1 W−s/C 3.3747E−1 4.1823E−1 sec

C_C8 node7 Gnd 2.2054E−1 4.7830E−1 W−s/C 3.3611E+0 2.7622E+0 sec

C_C9 node8 Gnd 8.8815E−1 1.9594E+0 W−s/C 2.1614E+1 3.0643E+1 sec

C_C10 node9 Gnd 1.8889E+0 6.0036E+0 W−s/C 1.1357E+2 1.2328E+2 sec

241 mm^2 653 mm^2 R’s R’s

R_R1 Junction node1 0.0578524 0.0578524 C/W 0.03814 0.03814 C/W

R_R2 node1 node2 0.173557 0.173557 C/W 0.093163 0.093163 C/W

R_R3 node2 node3 0.520671 0.520671 C/W 0.201565 0.201565 C/W

R_R4 node3 node4 1.07638 1.07638 C/W 0.936692 0.936690 C/W

R_R5 node4 node5 1.44732 1.44732 C/W 1.730444 1.730479 C/W

R_R6 node5 node6 0.510799 0.510799 C/W 0.690301 0.691548 C/W

R_R7 node6 node7 2.84846 2.31584 C/W 0.333827 0.60289 C/W

R_R8 node7 node8 9.11661 4.38504 C/W 4.196175 3.230389 C/W

R_R9 node8 node9 34.2576 20.0524 C/W 6.059695 5.266272 C/W

R_R10 node9 gnd 24.9485 11.0277 C/W 60.677683 28.776447 C/W

NOTE: The boldface elements represent the part of the network most closely associated with the package; the remaining elements
represent the environment. Listing the Foster rungs in ascending order of time constant provides a rough, though imperfect,
equivalent, as the fast response rungs necessarily result in the most significant contributions to the short−time (hence the
package) portion of the curve. As emphasized previously, however, the exact location of nodes within the Foster rungs has no
direct physical significance, and any apparent correlation with the Cauer resistors is purely coincidental.
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First, the fastest time constant for these networks is
2.98E−7 seconds (given exactly in the Foster Tau column).
An approximation of this value is found by the RC product
in the Cauer network closest to the junction, i.e. C_C1 times
R_R1, yielding 3.66E−7 s. Second, for convenience
(remember, the choice is arbitrary and does not affect the
junction response whatsoever), the rungs of the Foster
ladder are listed in ascending order of time constant, but it
is clear that the R’s do not correlate very well with the R’s
of the “corresponding” rungs of the Cauer networks. Third,
beginning at the short time ends of the ladders (both Cauer
and Foster), the models are identical between the two
boards. That is to say, for single pulse heating response, only
the package (which is the same) matters at first, and only
after some time has passed and the heat has begun to cross
from package into the board, does the environment
influence the response.

Q a − on time

period of waveform

p

peaks

valleys

Figure 12. Basic Square Wave

Periodic Waveforms Using Foster RC Models
Square−wave duty−cycle curves have been discussed, and

they are often derived from the simple formula expressed
previously in Equation 22. However, given an RC model (in
particular, the amplitude/time−constant Foster expression)
of a single−pulse transient curve, exact closed form
solutions for an infinite train of equal square pulses may be
derived. We will simply present several of these solutions
and illustrate how they may be applied (see AND8219/D).
Given the single−pulse heating curve formulation of an
n−rung RC model as indicated in Equation 23, we have the
following:

R(a, d) ��n

i�1

Ri
1 � e

a
�i

1 � e
p

d�i

(eq. 24)
peaks of simple square
wave train of duty cycle
d, on−time a

(eq. 25)
valleys of simple
periodic square
wave train

Y(a, d) ��n
i�1

Rie�1 � 1
d
� a
�i

1 � e
a
�i

1 � e
a

d�i

Observe that the on−time, period, and duty cycle of the
waveform are related through the equality a = p � d. When
the on−time is plotted on the x−axis, and the duty cycle is
used as a curve parameter, Equation 24 gives us the family
of duty cycle curves previously encountered in Figure 6,
based on the Foster RC resistor model as fit to the original

R(t) single−pulse heating curve. Indeed, if the RC model is
a good fit, the duty cycle curves derived from Equation 24
will be more accurate than if they are derived from the more
approximate formula of Equation 22 (with the possible
exception that for very short duty cycle values, and on−times
smaller than the smallest RC time constant, we may have the
same limitation related to square−root of time previously
discussed).

When a single pulse is repeated, (Figure 12), obviously
the peaks occur at the ends of the “on” times, and the valleys
occur at the ends of the “off” times (i.e., the beginning of
each “on” time). Further, when only a single square pulse is
repeated, it doesn’t matter where the pulse is positioned
within the period, if all one is concerned with is the peaks
and valleys. In fact, for convenience these preceding
formulas were derived under the assumption that the “on”
time of each pulse begins at the beginning of each cycle.

However, if we generalize the problem slightly and allow
a single square pulse to be positioned at an arbitrary point
within the cycle, some more powerful formulas may be
derived. For the formulas that follow, Figure 13 defines the
parameters for a generalized square pulse within a period of
length p. All times are relative to the beginning of a cycle.

Q

b – pulse turns on
a – pulse turns off p – period of waveform

p 2p

t – arbitrary time of interest within period

Figure 13. Generalized Square Wave

After an infinite number of identical cycles, the following
three formulas describe the shape of the temperature
response for the ranges indicated:

F(a, b, p, t) ��n
i�1

Ri�e
a−t−p
�i � e

b−t−p
�i

1 � e
p
�i

� (eq. 26)

good 
(computable)

only for
0 � t < b

F(a, b, p, t) ��n
i�1

Ri�1 �
e

a−t−p
�i � e

b−t
�i

1 � e
p
�i

�
(eq. 27)

good 
(computable)

only for
b � t < a

Note: if t = 0 and b = 0, Equation 25 results

F(a, b, p, t) ��n
i�1

Ri�e
a−t
�i � e

b−t
�i

1 � e
p
�i

�
(eq. 28)

good for
 0 � t � p

(computable)
only for t > a

Note: if t = a and b = 0, Equation 24 results
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For these formulas, the “computability” restriction is a
practical matter arising when positive arguments appear in
the exponential terms of the various numerators. Note also
that these formulas describe the response curve, but the
power level of the applied pulse has not yet been considered.
We defer consideration of pulse power to the following
formula, which now expresses the completely general
superposition of any number of square pulses occurring with
the same frequency, all positioned within the same cycle of
period p:

G(t) ��
k

QkF(ak, bk, p, t) (eq. 29)

Equation 29 now permits us to predict the “steady−state”
transient behavior of any complexity of periodic power,
assuming we break down the cycle into a series of
square−edged pulses − a process we illustrated (see
Figure 3) in an earlier example of a non−periodic waveform.
By “steady state” transient response, we mean the shape of
the temperature response curve for a typical cycle after an
infinite number of such identical cycles has occurred. An
important observation now must be made. Whereas the
“peak” and “valley” temperatures for an infinitely repetitive
single pulse can be predicted (i.e. Equation 24, 25) without
knowing the details of the profile, this is not possible for a
general periodic waveform, even when the waveform is a
relatively simple combination of just a few square
sub−pulses. Consider the following example, with the
periodic power input of Figure 14 applied to the RC model
given in Table 4.

Table 2. RC Model for 3−Pulse Example

tau
(sec)

R
[°C/W]

tau
(sec)

R
[°C/W]

1.00E−6 0.01104 1.00E−1 1.128566

1.00E−5 0.012806 1.00E+0 3.539626

1.00E−4 0.069941 1.00E+1 5.423616

1.00E−3 0.275489 1.00E+2 12.08694

1.00E−2 0.019806 1.00E+3 16.2933

1.0 ms

cycle repeats every 6 ms

6.0 ms4.3 ms2.3 ms
1.3 ms

1.4W

1.25W

0.2W

12.0 ms

Figure 14. 3−Pulse Periodic Input

Applying Equation 26, 27, and 28 to the respective
portions of each of three separate square pulses comprising
the repeated pattern, and Equation 29 to superimpose their
effects, we find the following temperature response:
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Figure 15. 3−Pulse Periodic Example Steady−State
Transient Response

What makes this example particularly interesting is that
the peak temperature (during a steady state cycle) occurs at
the end of the second pulse, which has a lower power and
even a small gap of zero power, between it and the higher
power pulse immediately preceding it in the cycle. Knowing
that the single pulse response is proportional to power, and
that the peak temperature always occurs at the end of a
square pulse (even when infinitely repeated), one might
easily overlook the possibility demonstrated here. In other
words, for a generalized periodic waveform, even when
constructed of (or perhaps approximated by) just a small
number of square sub−components, one does well to
compute the response throughout the entire range of a cycle,
not at just the “obvious” points.

Surface Heating, Square−Root of Time, and
Short−Time Transient Response

In most thermal transient tests, experimental data is
acquired as early as 1E−5 s (10 microseconds). However, in
most cases, due to electrical switching transients, it is
inconsistent between test devices out to as late as 1E−3 s.
Even when measurement consistency occurs at earlier
times, it is rarely reliable (meaning, consistent with expected
theoretical behavior) at times earlier than 1E−4 s. Usually,
in fact, measured signals corresponding to expected
theoretical behavior do not occur until somewhere between
3E−4 s and 1E−3 s. The two major contributors to this
correlation (or lack thereof) are electrical transient effects in
the devices (from the measurement perspective), and die
geometry effects (from the theoretical perspective).

More specifically, die thickness, and actual active heated
area as compared to overall die size, affect the theoretical
behavior. The simplest, commonly used theory for
short−time thermal transient behavior is the surface heating
model. This assumes constant power, 1−dimensional heat
flow (i.e., flow direction is exactly perpendicular to the
heated surface, with no spreading effects), and results in a
surface temperature rise that is proportional to the
square−root of heating time.
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Because of this, it is often referred to as “sqrt(t)” heating.
An important aspect of sqrt(t) heating is that on a log−log
plot (refer back to Figure 2), such a heating “curve” is a
straight line that rises one decade of temperature (or thermal
resistance) for every two decades of time increase (i.e. a
factor of 10 in temperature for every factor of 100 in time −
hence the sqrt(t)). On the log−log plot this appears,
therefore, as a 1:2 slope. The vertical position of this
theoretical line (the intercept on the log−log plot, or the
proportionality factor on a linear vertical scale) is
determined by the area being heated, and the material
properties of the die and whatever material adjoins the
heated surface of the die. (Typically, this adjoining material
is mold compound, which effectively lowers the heating rate
of a silicon free surface by about 10%. However, if the
silicon is covered by a copper “clip,” the short−time heating
rate may be lowered by as much as 70%.) Also consequent
to the sqrt(t) theory, the thinner the die, the sooner the heat
reaches the back side of the silicon and thus ceases to follow
the sqrt(t) model; a die of half the thickness will thus end its
sqrt(t) behavior in one fourth the time. Typically, we
consider that theoretical behavior should persist until about
1E−3 s for a 15 mil (380 micron) thick die, but when the
thickness is as small as 10 mil (250 micron), theoretical
behavior will last only 4E−4 s; for a 7−mil (180 micron)
thick die, sqrt(t) will last for only 2E−4 s. Die thickness is
also directly related to the other “extreme” of transient
behavior, that is, how long it will be until local steady state
(meaning the final temperature gradient, or maximum
temperature difference between heated surface and back of
silicon) is reached. All else being equal, this should take no
longer than 2.5E−3 s for a 15 mil die, and 5E−4 s for a 7 mil
die (as before, thickness increasing in proportion to the
square root of the time required).

On the other hand, a lumped parameter RC model, due to
the exponential nature of the equations describing its
behavior, will always become linear in time as the shortest
times are approached. Therefore an RC model will always
fail to approximate a sqrt(t) behavior if taken to times
smaller than its shortest time constant. Hence, as already
discussed, if it is known that sqrt(t) behavior is a reasonable
approximation to the actual behavior (typically in the 1E−6
to 1E−3 s range), but the RC time constants do not begin
lower than this range, the sqrt(t) model should be used
directly for short−pulse temperature estimates, otherwise
severe underestimates of temperature changes will result. (A
final caution, however, is that extremely short repetitive
pulses require a more thorough analysis – one approach
being to extend an RC model’s short−time response down
into the required time scale where it accurately
approximates the sqrt(t) behavior. (See AND8218/D for
details.)

The following tables provide definitions and formulas
useful for 1D surface heating estimates, and some typical
material property values found in semiconductor packaging.

Table 3. 1D Surface Heating Formulas and
Definitions

Thermal Property

tb=� (t)
Temperature rise at surface [°C/W]

ηπ
12

A

Θ=b
Sqrt(t) proportionality[°C/W/√s]

pckρη = Thermal effusivity [W√s/mm2/°C]

21
ηηη +=

e
Effective effusivity for heating at planar
interface between two materials

α
τ

2L=
Characteristic time through thickness L [s]

pc
k

ρ
α =

Thermal diffusivity [mm2/s]

where:

Q Heat input (W)

A Heated area (mm2)

k Thermal conductivity (W mm−1 C−1)

ρ Density (kg mm−3)

pc Specific heat (J kg−1 mm−1)

Table 4. Material Properties for Short−Time Thermal
Response

Thermal Property

Material Diffusivity, α
[mm2/s]

Effusivity, η
[W√s/mm2/°C]

Silicon 52.7 0.0138

Typical mold compound 0.31 0.00126

Copper 111 0.0360

Gold 128 0.0281

Air 24.9 6.0E−6
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